Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300–700 km depths1,2and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb–Sr, Sm–Nd, U–Pb and Re–Os) applied to Fe-sulfide and CaSiO3inclusions within 13 sublithospheric diamonds from Juína (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic–Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth—with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust—could have enhanced supercontinent stability.more » « less
-
Abstract Natural diamonds and their inclusions provide unique glimpses of mantle processes from as deep as ~800 km and dating back to 3.5 G.y. Once formed, diamonds are commonly interpreted to travel upward, either slowly within mantle upwellings or rapidly within explosive, carbonate-rich magmas erupting at the surface. Although global tectonics induce subduction of material from shallow depths into the deep mantle, mineralogical evidence for downward movements of diamonds has never been reported. We report the finding of an unusual composite inclusion consisting of ringwoodite (the second finding to date), tetragonal zirconia, and coesite within an alluvial super-deep diamond from the Central African Republic. We interpret zirconia + coesite and ringwoodite as prograde transformation products after zircon or reidite (ZrSiO4) and olivine or wadsleyite, respectively. This inclusion assemblage can be explained if the diamond traveled downward after entrapping olivine/wadsleyite + zircon/reidite, dragged down by a subducting slab, before being delivered to the surface. This indicates that the commonly assumed view that diamonds form at, and capture material from, a specific mantle level and then travel upward is probably too simplistic.more » « less
-
Abstract Nixonite (IMA 2018-133), ideally Na2Ti6O13, is a new mineral found within a heavily metasomatized pyroxenite xenolith from the Darby kimberlite field, beneath the west-central Rae Craton, Canada. It occurs as microcrystalline aggregates, 15 to 40 μm in length. Nixonite is isostructural with jeppeite, K2Ti6O13, with a structure consisting of edge- and corner-shared titanium-centered octahedra that enclose alkali-metal ions. The Mohs hardness is estimated to be between 5 and 6 by comparison to jeppeite, and the calculated density is 3.51(1) g/cm3. Electron microprobe wavelength-dispersive spectroscopic analysis (average of 6 points) yielded: Na2O 6.87, K2O 5.67, CaO 0.57, TiO2 84.99, V2O3 0.31, Cr2O3 0.04, MnO 0.01, Fe2O3 0.26, SrO 0.07, total 98.79 wt%. The empirical formula, based on 13 O atoms, is: (Na1.24K0.67Ca0.06)Σ1.97(Ti5.96V0.023Fe0.018)Σ6.00O13 with minor amounts of Cr and Mn. Nixonite is monoclinic, space group C2/m, with unit-cell parameters a = 15.3632(26) Å, b = 3.7782(7) Å, c = 9.1266(15) Å, β = 99.35(15)°, and V = 522.72(1) Å3, Z = 2. Based on the average of seven integrated multi-grain diffraction images, the strongest diffraction lines are [dobs in Å (I in %) (hkl)]: 3.02 (100) (310), 3.66 (75) (110), 7.57 (73) (200), 6.31 (68) (201), 2.96 (63) (311), 2.96 (63) (203), and 2.71 (62) (402). The five main Raman peaks of nixonite, in order of decreasing intensity, are at 863, 280, 664, 135, and 113 cm–1. Nixonite is named after Peter H. Nixon, a renowned scientist in the field of kimberlites and mantle xenoliths. Nixonite occurs within a pyroxenite xenolith in a kimberlite, in association with rutile, priderite, perovskite, freudenbergite, and ilmenite. This complex Na-K-Ti-rich metasomatic mineral assemblage may have been produced by a fractionated Na-rich kimberlitic melt that infiltrated a mantle-derived garnet pyroxenite and reacted with rutile during kimberlite crystallization.more » « less
An official website of the United States government
